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The r: able X 4s said to be wore varisble than Y if
E[£(X)] [£¢Y)] for all increasing convex functions £ . We prove
s preservation, under random sized sums, property of this ordering
and then applying it to branching processes and shock models. Other
aspplications of this ordering--to a population survival and to a
Poisson shock model-—are also given.
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~ SOME RELIABILITY APPLICATIONS OF THE VARIABILITY ORDERING

by
Sheldon M. Ross and Zvi Schechner

1. A VARIABILITY RESULT

If x1 and x2 are random variables having respective distributions

5

Xz) or equivalently that F

and F, , then we say that Xy _;_ X, (read X; is less varisble than

<F, 1if

1 2
v

f £ (x)dF, (x) 5,[' £ (x)dF, (x)

for all increasing convex functions f . Some easily derived properties of
this érdering are

1. ¥, <¥, if and only if
v
- - :
I P, (x)ax > f Fy(x)dx for all a
a a )

vhere l'i-l-!‘i.

2. 1If ¥ <G ,41=1,2,then P, *F, <G, * G, vhere * denotes
v v
convolution.

We will now present a theorem concerning this ordering and in Sections
2 and 3 apply it to branching processes and shock models. Other applications
of the varisbility ordering to population survival models (Section 4) and to
Poisson shock models (Section 5) will then be presented.
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Theorem 1:

Let xl.xz, ++o be a sequence of nonnegative independent and identically

5;.;
e
gg
*
Y

distributed random variables and similarly Yl,Yz, ees « Let N and M be-
f; integer valued nonnegative random variables that are independent of the {xi}
4
® and {Yj_} sequences. Then
-
8 .
- N M
% xiizi,ill,nlu-iglx 3_12111.
be v v v :
N
; Proof:
& We will first show that
|
Q
’ I
% X, > X, .
'? | : =1 154m 1
A .
',1 Let h denote an increasing convex function. To prove the above we must
::3'6 show that
) j
) (1) !h( x) > E x) .
% : iJ] - i
“ 1 1
‘, :
.|
* Since N > M, and they are independent of the X , the above will follow
. v
4‘ if we can show that the function g(n) , defined by
3 g(n) = x[n(xl L . xn)]
.:.j
? is an increasing convex function of n . As it is clearly increasing since
f.% e .
h 4is and each 11 is nonnegative it remains to show that g is convex,
bt or, equivalently, that
f(
i
3 (2) g(n + 1) - g(n) is increasing in n .
.
2 - S T

.
‘‘‘‘
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. |
To prove this let S = ) X , and note that
1

T et

g(n + 1) - g(n) = E[b(S_ +X ) - h(Sn)] .

5 i

‘ E(h(sn +X ) -h(s) | 8, =¢€] =Eh(t+X ) - h(t)]
% |
) 7 - = £(t) (say).

As h 1s convex, it follows that £(t) 4s increasing in t . Also, as

PO

PR

d S, increases in n , we see that E[f(S )] increases in n . But

LA

E[£(S )] = g(n + 1) - g(n)

* and thus (2) and (1) are satisfied.

We have thus proven that

Ll ]
be
VY
q)v
=
“N

4 and the proof will be completed by showing that

=R
»N
d)v
[l ]
-
(S8

or, equivalently, that for increasing, convex h
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2. A BRANCHING PROCESS APPLICATION

Consider two Galton Watson branching processes in which individuals
at the end of their lifetime give birth to a random number of offspring.

Let x§:) »3J>1,n2>0 denote the number of offspring of the jth
h

individual of the nth generation in the 1t

Suppose that the random variables x§§) »3J>21,n>0 are independent

branching process, 1 =1, 2.

for 1 =1, 2 and have a distribution not depending on j . In additiom,

suppose that

1) (2)
xjn %xjn for all n, jJ .

Let zéi) s 1=1, 2 denote the size of the nth generation of the 1th

process.

Proposition 2:

1 zP a1,121,2, them 2V >2? forau n.
v

Proof:

The proof is by induction on n . As it is true for n =0,

assume it for n . Now,

e

(D o F D
Z - X
ntl jzl Jon

2(®
(2) . §F L@
zn+1 le xj,n

and so the result follows from Theorem 1.||
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Lemma 4:

Let P{X=1} =a, P(X=0} = (1-0o) -H58 pixaz .t

by and let Y be a nonnegative, integer valued, and such that P{Y = 1} < a

and E[Y] =M. If a<M<2-a,then X<Y.
v

. Proof:
3 We must show that

» ] P{Xx>1}< J P{Y>4} ,n=1,2, ... .
-‘in 1=n+1 1=n+l

As E[X] = E[Y] = M. this is equivalent to

n n -
3 ] Pix>1}> J Pl¥Y>4} ,n=1,2, ....
i=]1 i=1 ’

2 When n = 1, the above reduces to P{X = 0} < P{Y = 0} . This follows

“

A j

0
k™o
Loxs
>
B &
Ty
T
=0

e

equivalent to

N n

by M> § P{Y>1)
3:1 i=l

Y

% which follows since E[Y] = M ||

.
2
&
g
b

since, as P{Y =1} < P{X =1} , if P{Y = 0} < P{X = 0} then it would

not be possible for E[Y] to equal E[X] . When n > 1, the above is
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3. A SHOCK MODEL APPLICATION

Suppose that shocks occur in accordance with a remewal process having
interarrival distribution G and mean ¥e Each shock gives rise to a
nonnegative random damage which, independent of all else, has probability
distribution F . The damages are assumed to be additive and we let
D(t) denote the dainage at time t . That is,

M(t)

D(t) = X
g=1 1

where xi is the damage of the ith

shocks by t . The system is assumed to fail the first time that D(t)

shock and M(t) 1is the number of

exceeds some constant c¢ . That is, the system fails at time TF G where
]

TF,G = min {t : D(t) > c} .

We will obtain a variability result about T vhen both F and G

F,G
are NBUE distributions, where a distribution of a nonnegative random

variable X 1s said to be NBUE (new better than used in expectation) if
E[X-t | X>t] <E[X] forall t>0.

Letting

N(c)-m{n:x1+...+xnic} .

Then the system will fail at the time of the N(¢) + 1 shock.

Lemnma 5:

If F 4is NBUE, then

N(e) +1 <N (c) +1

o e+ e ‘
Ter nt Nt el e e, LS
A Nt . e
v ! Pl T L)
1 RN Nl L Tl R I
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* .
wvhere N (c) 1is a Poisson random variable with mean c/uF where Hp = E[X] .

Proof: -

As N(c) 418 just the number of renevals by time c¢ of a renewal process
wvhose interarrival distribution is NBUE with mean Hp > the result follows

from Theorem 3.17 on page 173 of [1].]]

Proposition 6:

If F and G are both NBUE distributions, then

T, .<T
F,6 - E,E,

wvhere E, and Ez are exponential random variables having the same means

1
as F and G respectively.

Proof:

We can express TF,G by

N(c)+1

T -

?,G b

mp 1
vhere the Y,_ » 1> 1, are the interarrival times between successive shocks.
They are thus independent and have distribution G . Now, it is well known

that an NBUE distribution G i1is less variable than an exponential distribu-

tion with the same mean and so

vhen ¢

1 is exponential with mean g

The result now follows from Lemma 5 and Theorem 1.||
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Remark:
*
N (c)+1 * .
As T = 2 €, » it follows upon conditioning on N (c) that
E.,E i .
1°72 i=1
. A
{ } ; =c/up (c/up) _(x)
 2¢ ¢ <xp= e —0

wvhere Gn(x) is the gamma d;l.stribution with parameters n and lluc

(its mean 1is nuc) « Also,if F and G are NBUE, then from Proposition 6

all of the moments of rr ¢ are no greater than the corresponding moments
» .

of 1'31’32 . For instance,

E[TF,G] < B[rll'gz]' - B[(N*(c) + l)uG] - (cl"r + 1)uc' .




4. A POPULATION SURVIVAL MODEL

Consider a population of m individuals each of whom is required to spend
'.“ : exactly one time unit out in the field. For each day i , i =1,2, ..., m,

there is a random variable Y, which represents the probability that an indi-

i

vidual out on the field on day 1 will survive. That is, given Y, , each

i
individual sent out on day {1 will independently survive with probability

Y:I. « The Y:l » 1 - l, ..., m are assumed to be independent and identically

R distributed random variables for which P{0 <Y, <1} = 1 .

i
A strategy for the population is a positive integer valued vector n =

: k

(nl, coes nk) s k<, Z n, = m , with the interpretation that n, individuals
- i i i

are sent out onday 1 , 1 =1, ..., k . Let N(n) denote the nusber of indi-

viduals that survive under strategy n .

Proposition 7:

b N(B) lN(l,l, scey 1) .
;v v
A . Proof:

As the varisbility ordering is cloood'undc?: convolution, it clearly
suffices to prove that if n :lndivj.duh are sent out on & given day, then
the nusber of survivors is more variable than it would be if the n indi-
viduals were sent out on separate days. Hence, we must show that for any

convex function £
n a
:[go ((j)rta - n“"] 2 b f(3)Emitn - xn ™t
i

Bowever, it follows from the following lemma that the function
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n
g = } f(i)(:)pi(l -t
1=0

is convex in p and so 'the above follows from Jensen's Inequality.ll

Lemma 8:

Let xl,xz, «es be independent Bernoulli random variables with

r{xi =1l}=p. If f 1is a convex function, then for any constant c ,

E[f('i xi + c)] is a convex function of p .
1

Proof:

The proof is by induction. When n = 1 we must show that pf(c + 1) +

(1 - p)f(c) 1is convex in P », vhich is immediate. Assuming the result for

‘n-1 we then have, upon conditioning on S

s[f('lf x, + c)] - pE[f(nglxi e 1)] +a- p)l[f(ngl x, + c)] .

Hence 1if we let

-]
8c(p) - E[f § xi + c)] ,
we must show that
h(p) = P84 (P) + (1 - p)g (P)

is convex. Differentiation with respect to p yields

B''(P) = 2(8L,, () - SL(P)) + PELL,(P) + (1 - PIg'(P) .

.......
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b i
Now, g;'(p) and 3::';-1(?) are nonnegative by the induction hypothesis.

Also, as f' 1s increasing in x , we see that

0
i

¥

S - (n7l
g.(p) = E f'( E X, + a)

o Yo Tl

is increasing in a and thus gé_u(p) - 3&(9) > 0 . Hence,

RN

L

¥ aar
d "il:h'zv yud g

h"(p) lo

P

2

s

AN Ae N RE S B 2 R LR
vt !.‘.“A"" LA ALy

which proves the result.|]

N

Remark:

Since E[N(n)] = 'nE[Y] for all strategies n , it follows, as in
Corollary 3, that P{N(n) = 0} is minimized by the strategy (1,1, ..., 1) .
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5. A POISSON SHOCK MODEL

e

" Suppose that unobserved shocks hit a device in accordance with a Poisson
,‘ process having rate A . At some time the device is inspected and if n

. , shocks have occurred by that time a cost f(n) 1s incurred, where f is an
increasing, convex function. There are two inspection plans that can be

‘.3 employed—one of which inspects .ihe device after a random time X and the
1 other after a random time Y , and we are interested in determining which
N plan leads to a smaller expected cost.

N Proposition 9 shows that if X is more variable than Y , then it leads
~12

' j to a gresater expected cost.

.

} Proposition 9:

: Let {N(t) , t > 0} be a Poisson process with rate A and let X and
Y be nonnegative random varisbles that are independent of the Poisson

; . process. Then

e |

:.1 .

h X>Y= NX) > N(Y) .

N v v

N *

Proof:

4
Let f be a convex, increasing function and suppose, without loss of

i generality, that f£(o) = 0 . Let /

i .

X A(n) = £(n + 1) - £(n)

H(t) = § £(n)(At)?/n!
n=0

and note that A(n) > 0 - and increasing in n by assumption. Now,
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E[£(N(X))] = _{ B TOF X

X

where F, 1is the distribution function of X . Hence, it suffices to show
that g(t) = ¢ ‘tH(t) 1s a convex increasing function of t . Now,

g'(t) = -Ae  tH(t) + e B (¢)

- et I [£(o+ 1) - £) "
n=0

/!
= AE[A(N(t))] .

Now, 4 >0 and so g' >0 . Also,as N(t) is stochastically increasing in
t and A 1is increasing, it follows that E[A(N(t))] 1is increasing in ¢t

and so g 4is convex.|]|

Remark:

Proposition is not true for a general renewal process. It is clearly
not true for a deterministic renewal process. (If all interarrivals equal 1

and X uniform (1.9,2.1), Y =2, then X>Y but N(X) < N(Y)). Evemn
v st

1f the interarrival distribution has a decreasing failure rate, Proposition 9
nsed not be true. For a counterexample, suppose the interarrival distribution
‘“ :

' -Alx -).zx
(x) =p(l~-ce Y+ (1-p)(1-¢e ).0<p<1.A1#Az.

To compute E[N(t)] , imagine that at each renewal a coin, having probability
p of landing heads, is flipped. If head appears, the next interarrival is

exponential with rate Al and if tails, it is exponential with rate Az .




w e 8 LN T e T e T Y

If we let A(t) =1, if the rate at t s A, , them {A(t) , t > O} {s

1 9
a 2-state Markov chain which leaves state 1 (2) to go to state 2 (1) at an

4 exponential rate A.q (Azp) where q=1-p . Also, P{A(0) =1} = p ,
',I Hence, it follows (see [4], page 221) that

B

. 2 2 A P

& PIACE) = 1} = pat 4 (1 - o73%) 22

X ‘ A

v

& wvhere

A.-Alqi-xzp.

‘ Hence,

L pa(r, - 1,) Y Ap

4 Ir{n(-)-na- Lt a-aHe L,
‘ A X S

We can now compute E[N(t)] as follows: |

~-

t t
2] =3, [ 2iae) = 140 42, [ r000) = 2100
0 0

ot WP RFAACrE  NSRERRS

2
pa(d; - 1,) K A0
-1 2 -t 412,
X A

13 Therefore, E[N(t)] i1is of the fora
&
BN(t)] = AL - ) 4+t ,A>0,850,¢>0.
N Hence if we let x‘ beuniformon (1 ~-¢,1+¢),0<¢<1l, then
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| a
RIN(X)] = A - A I 5 dx + B

1-¢

-c '
e -C€ CE
-A[1+2c€(e -e )] +8.

Hence, x[u(xe)] decreases in ¢ vwhen ¢ 1s near 1. However, xe

vhenever 0 < ¢, < ¢ <1,

1
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